首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2299篇
  免费   570篇
  国内免费   451篇
测绘学   141篇
大气科学   71篇
地球物理   1081篇
地质学   1296篇
海洋学   214篇
天文学   7篇
综合类   299篇
自然地理   211篇
  2024年   4篇
  2023年   10篇
  2022年   41篇
  2021年   48篇
  2020年   72篇
  2019年   84篇
  2018年   75篇
  2017年   101篇
  2016年   99篇
  2015年   116篇
  2014年   144篇
  2013年   128篇
  2012年   89篇
  2011年   102篇
  2010年   104篇
  2009年   134篇
  2008年   142篇
  2007年   136篇
  2006年   149篇
  2005年   134篇
  2004年   155篇
  2003年   131篇
  2002年   115篇
  2001年   114篇
  2000年   106篇
  1999年   90篇
  1998年   83篇
  1997年   83篇
  1996年   85篇
  1995年   108篇
  1994年   69篇
  1993年   47篇
  1992年   52篇
  1991年   34篇
  1990年   38篇
  1989年   21篇
  1988年   20篇
  1987年   11篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   12篇
  1977年   2篇
  1954年   6篇
排序方式: 共有3320条查询结果,搜索用时 109 毫秒
111.
基于通量均衡基准的地壳垂直形变场分析模型   总被引:1,自引:0,他引:1  
根据全球通量均衡假说建立了地壳垂直形变场的分析模型,在球面近似下求得了该模型的球谐函数级数解并拟合了两个不同区域的地壳垂直形变场,编绘了等值线图,继而在密切平面坐标系下导出了该模型的Fourier级数解。结果表明,该方法不仅具有几何意义,而且具有一定的地球动力学意义。  相似文献   
112.
孙毅  汪智 《四川地震》2005,(2):35-39
研究了定点连续形变长周期频段信息和块体构造活动的关系。研究结果表明,在川滇菱形块体内,定点连续形变观测获得的长周期频段信息中的长期趋势变化除去仪器零漂等局部干扰外,基本上都和块体运动方向或者块体边界主干断裂活动方式相一致,表明在定点连续形变长周期频段信息中,也存在有与地震孕育有关的地壳形变信息。对其在预报上的作用做了初步研究。  相似文献   
113.
青藏块体东北缘和川滇GPS监测区1991(1993)、1999和2001年高精度GPS观测资料揭示:2001年11月14日昆仑Ms8.1地震前,青藏块体北、东缘构造区域水平运动变形场动态演变具有一定的关联性特征。即:在继承性运动总体背景下,临近大震发生时两区域运动强度同步减弱且变形状态发生变化。结合地质构造分析研究认为,昆仑Ms8.1地震前,青藏块体边界运动变形的关联性变化与大震孕育后期大范围应力应变快速积累所形成的扰动应力场有关;随着块体内部大震的发生、应变能的大量释放和构造应力场的调整,可能会促使块体边界地带具有较高应变积累的相关构造部位(尤其是未被历史强震破裂贯通的地带)的应力应变的进一步积累或破裂释放。  相似文献   
114.
The model for the 2000 dike intrusion event between Kozushima and Miyakejima volcano, Japan, was reinvestigated. After the sudden earthquake swarm in Miyakejima volcano, a dike intrusion of large volume was detected by the nationwide GPS network (Geonet). The displacements detected with GPS stations over an area with a radius of about 200 km shows a distribution that is consistent with the dike source being located near Miyakejima volcano.The dike was intruded northwestwards between Miyakejima and the neighboring Kozushima volcano. We searched for the parameters in the models that reproduce the regional displacements due to dike intrusion between Miyakejima and Kozushiima islands. We tested three models, (1) the model with a single dike, (2) the model with a dike and a point dislocation source which represents a creep dislocation source and (3) the model with a dike and a deflation source which represents a magma reservoir. Though all three models can match the horizontal displacements near the source area, model 1 fails to reproduce the regional displacements in the central part of Japan. Both models 2 and 3 can reproduce the regional displacement for horizontal components. Model 3 produces slightly better results than model 2 for vertical components. The balance in the volume budget for models 2 and 3 is also consistent with the observations. These results show that we cannot distinguish between the two models using only GPS observation. As there is no direct evidence for such a large creep or ductile source (corresponds to M7 or more) as proposed in model 2 and the active seismic region migrated back and forth within the linear swarm region, the model with a dike and a deep magma source is preferable. For the deflation point source, we obtained a deflation volume of 1.5 km3 at the depth of 20 km below the dike. An additional ~0.95 km3 of volume loss through caldera collapse and edifice deflation took place at Miyakejima. We conclude that the magma that intruded the dike came in part from below Miyakejima and in part from below the sea floor between Miyakejima and Kozushima, perhaps from reservoirs at the Moho.Editorial responsibility: S Nakada, T Druitt  相似文献   
115.
INTRODUCTIONThe Zhangjiakou-Penglai fault zone has drawnextensive attentionfromseismologists and geologistssince it was determinedinthe1980’s(Zheng Binghua,et al.,1981).Ma Xingyuan,et al.(1989)consideredit asthe north boundaryof North China sub-block.Int…  相似文献   
116.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
117.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   
118.
Anomalous crustal and upper mantle structure of northern Juan de Fuca plate is revealed from wide-angle seismic and gravity modelling. A 2-D velocity model is produced for refraction line II of the 1980 Vancouver Island Seismic Project (VISP80). The refraction data were recorded on three ocean bottom seismometers (OBSs) deployed at the ends and middle of a 110 km line oriented parallel to the North American continental margin. The velocity model is constructed via ray tracing and conforms to first-arrival amplitude observations and travel time picks of direct, converted and reflected phases. Between sub-sediment depths of 3 to 11 km, depths normally associated with the lower crust and upper oceanic mantle, the final model shows that compressional-wave velocities decrease significantly from southeast to northwest along the profile. At sub-sediment depths of 11 km at the northwestern end of the profile, P-wave velocities are as low as 7.2 km/s. A complementary 2-D gravity model using the geometry of the velocity model and velocity–density relationships characteristic of oceanic crust is produced. The high densities required to match the gravity field indicate the presence of peridotites containing 25–30% serpentine by volume, rather than excess gabbroic crust, within the deep low velocity zone. Anomalous travel time delays and unusual reflection characteristics observed from proximal seismic refraction and reflection experiments suggest a broader zone of partially serpentinized peridotites coincident with the trace of a pseudofault. We propose that partial serpentinization of the upper mantle is a consequence of slow spreading at the tip of a propagating rift.  相似文献   
119.
A. Dini  G. Gianelli  M. Puxeddu  G. Ruggieri   《Lithos》2005,81(1-4):1-31
Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8–2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3–1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14–23 km depth), characterized by distinct εNd(t) and 87Sr/86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3–6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low εNd(t) value (about −10.5) produced the oldest intrusions (about 3.8–2.5 Ma). Afterwards (2.5–2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher εNd(t) value (−7.9). Finally, a muscovite-rich source with high εNd(t) (about −8.9) gave origin to the younger group of granites (2.3–1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to the same intrusion is interpreted, as due to the short residence time of magmas in the source region followed by their rapid transfer to the emplacement level. Partial melting was probably triggered by multiple, small-sized mafic intrusions, distributed over the last 3.8 Ma that allowed temporary overstepping of biotite- and muscovite-dehydration melting reactions into an already pre-heated crust. Dilution in time of the magmatic activity probably prevented melt mingling and homogenization at depth, as well as the formation of a single, homogeneous, hybrid pluton at the emplacement level. Moreover the high concentrations of fluxing elements (B, F, Li) estimated for the LAR granites modified melt properties by reducing solidus temperatures, decreasing viscosity and increasing H2O solubility in granite melts. The consequences were a more efficient, fast, magma extraction and transfer from the source, and a prolonged time of crystallization at the emplacement level. These key factors explain the long-lived hydrothermal activity recorded in this area by both fossil (Plio-Quaternary ore deposits) and active (Larderello geothermal field) systems.  相似文献   
120.
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August–September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW–ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as “Texans”), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10–25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号